Photoacid Behaviour in a Fluorinated Green Fluorescent Protein Chromophore: Ultrafast Formation of Anion and Zwitterion States.†.
نویسندگان
چکیده
The photophysics of the chromophore of the green fluorescent protein in Aequorea victoria (avGFP) are dominated by an excited state proton transfer reaction. In contrast the photophysics of the same chromophore in solution are dominated by radiationless decay, and photoacid behaviour is not observed. Here we show that modification of the pKa of the chromophore by fluorination leads to an excited state proton transfer on an extremely fast (50 fs) time scale. Such a fast rate suggests a barrierless proton transfer and the existence of a pre-formed acceptor site in the aqueous solution, which is supported by solvent and deuterium isotope effects. In addition, at lower pH, photochemical formation of the elusive zwitterion of the GFP chromophore is observed by means of an equally fast excited state proton transfer from the cation. The significance of these results for understanding and modifying the properties of fluorescent proteins are discussed.
منابع مشابه
Effect of protein environment on electronically excited and ionized states of the green fluorescent protein chromophore.
The effect of the protein environment on the electronic structure of the green fluorescent protein (GFP) chromophore is investigated by QM/MM (quantum mechanics/molecular mechanics) calculations. The protein has very small effect on the excitation energy of the bright absorbing and the lowest triplet states of the anionic GFP chromophore, deprotonated 4-hydroxybenzylidene-2,3-dimethylimidazolin...
متن کاملMechanism of resonant electron emission from the deprotonated GFP chromophore and its biomimetics.
The Green Fluorescent Protein (GFP), which is widely used in bioimaging, is known to undergo light-induced redox transformations. Electron transfer is thought to occur resonantly through excited states of its chromophore; however, a detailed understanding of the electron gateway states of the chromophore is still missing. Here, we use photoelectron spectroscopy and high-level quantum chemistry ...
متن کاملMicrosoft Word - Septennial FH REPORT 2002-2008.docx
In green fluorescent protein, photo-excitation leads to excited-state proton transfer from its chromophore, leavingbehind a strongly fluorescing anion, while the proton is commonly thought tomigrate internally toGlu-222. X-ray data show that theprotein contains more extended hydrogen-bonded networks that can support proton migration (i.e., proton wires). Here we studythe temperature...
متن کاملTransition in the temperature-dependence of GFP fluorescence: from proton wires to proton exit.
In green fluorescent protein, photo-excitation leads to excited-state proton transfer from its chromophore, leaving behind a strongly fluorescing anion, while the proton is commonly thought to migrate internally to Glu-222. X-ray data show that the protein contains more extended hydrogen-bonded networks that can support proton migration (i.e., proton wires). Here we study the temperature-depend...
متن کاملAn alternate proton acceptor for excited-state proton transfer in green fluorescent protein: rewiring GFP.
The neutral form of the chromophore in wild-type green fluorescent protein (wtGFP) undergoes excited-state proton transfer (ESPT) upon excitation, resulting in characteristic green (508 nm) fluorescence. This ESPT reaction involves a proton relay from the phenol hydroxyl of the chromophore to the ionized side chain of E222, and results in formation of the anionic chromophore in a protein enviro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical science
دوره 7 9 شماره
صفحات -
تاریخ انتشار 2016